A Mortar Finite Element Method Using Dual Spaces for the Lagrange Multiplier

نویسنده

  • Barbara I. Wohlmuth
چکیده

The mortar nite element method allows the coupling of diierent discretization schemes and triangulations across subregion boundaries. In the original mortar approach the matching at the interface is realized by enforcing an orthogonality relation between the jump and a modiied trace space which serves as a space of Lagrange multipliers. In this paper, this Lagrange multiplier space is replaced by a dual space without losing the optimality of the method. The advantage of this new approach is that the matching condition is much easier to realize. In particular, all the basis functions of the new method are supported in a few elements. The mortar map can be represented by a diagonal matrix; in the standard mortar method a linear system of equations must be solved. The problem is considered in a positive deenite nonconforming variational as well as an equivalent saddle-point formulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Quasi-dual Lagrange Multiplier Space for Serendipity Mortar Finite Elements in 3d

Domain decomposition techniques provide a flexible tool for the numerical approximation of partial differential equations. Here, we consider mortar techniques for quadratic finite elements in 3D with different Lagrange multiplier spaces. In particular, we focus on Lagrange multiplier spaces which yield optimal discretization schemes and a locally supported basis for the associated constrained m...

متن کامل

Mortar Finite Elements with Dual Lagrange Multipliers: Some Applications

Domain decomposition techniques provide a powerful tool for the numerical approximation of partial differential equations. We consider mortar techniques with dual Lagrange multiplier spaces to couple different discretization schemes. It is well known that the discretization error for linear mortar finite elements in the energy norm is of order h. Here, we apply these techniques to curvilinear b...

متن کامل

Dual Quadratic Mortar Finite Element Methods for 3D Finite Deformation Contact

Mortar finite element methods allow for a flexible and efficient coupling of arbitrary nonconforming interface meshes and are by now quite well established in nonlinear contact analysis. In this paper, a mortar method for three-dimensional (3D) finite deformation contact is presented. Our formulation is based on so-called dual Lagrange multipliers, which in contrast to the standard mortar appro...

متن کامل

Second Order Lagrange Multiplier Spaces for Mortar Finite Elements in 3D

Domain decomposition techniques provide a flexible tool for the numerical approximation of partial differential equations. Here, we consider mortar techniques for quadratic finite elements in 3D with different Lagrange multiplier spaces. In particular, we focus on Lagrange multiplier spaces which yield optimal discretization schemes and a locally supported basis for the associated constrained m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2000